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Abstract. We argue that driving styles demand adaptive classifications,
and such mechanisms are essential for adaptive and personalized Human-
Vehicle Interaction systems. To this end, we conduct an in-depth study to
demystify complicated interactions between driving behaviors and styles.
The key idea behind this study is to enable different numbers of clusters
on the fly, when classifying driving behaviors. We achieve so by applying
Self-Clustering algorithms (i.e. DBSCAN) over a state-of-the-art open-
sourced dataset of Human-Vehicle Interactions. Our results derive 8 key
findings, which showcases the complicated interactions between driving
behaviors and driving styles. Hence, we conjecture that future Human-
Vehicle Interactions systems demand similar approaches for the charac-
terizations of drivers, to enable more adaptive and personalized Human-
Vehicle Interaction systems. We believe our findings can stimulate and
benefit more future research as well.

Keywords: Driving behaviors · Driving styles · Adaptive &
personalized human-vehicle interactions

1 Introduction

Responses from Driver-Vehicle Interactions, whether they satisfy drivers’ expec-
tations or not, have significant impacts on users’ trusts in terms of Autonomous
Driving. To deliver user-expected interactions, detailed insights from Driving
statistics are the most critical parts of modern Human-Vehicle Interaction sys-
tems. For instance, users’ trust in Autonomous Vehicles are highly dependent
with such responses, which rely on the detailed insights from driving statistics
[16,30,37]. Recent efforts characterize driving behaviors empirically, and fur-
ther classify them into multiple driving styles in static partitions. However, with
the growing popularity of Autonomous Vehicles, computational methods, rather
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than empirical methods, can potentially fit better within personalized Human-
Vehicle Interactions, in practice.

With such a mindset, we argue that conventional classifications of driv-
ing styles are not suitable for adaptive and personalized Human-
Vehicle Interaction systems. We disagree with the conventional approach
from the following two aspects. First, static classifications of driving styles are
not adaptive during the driving procedures; and second, driving styles, derived
from empirical studies, are insufficient to contribute to personalized Human-
Vehicle Interaction techniques. We believe that the root causes of the above
issues are because complicated interactions between driving styles and behav-
iors remain under-studied, in terms of both mechanisms and findings.

Our goal is to demystify complicated interactions between driving behav-
iors and driving styles, to reveal the opportunities for adaptive and personalized
Human-Vehicle Interactions. We make the key observation that the conven-
tional classifications of driving styles rely on static partitions of driving behav-
iors, obtained from empirical studies. In other words, the problem is abstracted
as clustering techniques, with the pre-determined number of clusters. To this
end, our key idea is to apply computational techniques to eliminate the needs
for pre-determined number of clusters. Hence, we utilize self-clustering algo-
rithms, Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
for adaptive classifications of driving styles and hidden patterns of driving
behaviors.

We perform our studies over BROOK, a state-of-the-art and open-sourced
dataset for Human-Vehicle Interactions. Our studies have included 34 drivers in
11 dimensions of driving statistics [23]. In total, we make 8 key findings through
our studies. Our studies start with rigorous examinations of the impacts from
different DBSCAN configurations, representative driver groups, time-series vari-
ations, road conditions and etc. Furthermore, we characterize in-depth charac-
teristics of driving styles, by breaking down detailed features and analyzing the
overlap across different styles. Based on the above findings, we confirm that the
interactions between driving behaviors are more complicated, and our DBSCAN-
based approach is more applicable in this context, compared with conventional
partitions of driving styles.

We make the following key contributions in this paper:

– We address the problem that conventional classifications of driving styles over-
look the opportunities for adaptive and personalized Human-Vehicle Interac-
tions, and identify that the static partitions of driving styles are the key
limitation in conventional approaches.

– To the best of our knowledge, we are the first to propose and utilize Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), for adaptive
classifications of driving styles and hidden patterns of driving behaviors.

– We experimentally characterize and examine the effects of our DBSCAN-
based approach over BROOK, a state-of-the-art and open-sourced dataset
for Human-Vehicle Interactions.
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– We retrieve 8 key findings from the above studies, by rigorously changing
different configurations. These observations can serve as starting guidelines for
adaptive and personalized Human-Vehicle Interactions systems in the future,
for both research and industrial communities.

The rest of this paper would be organized as follow. Section 2 introduces the
related works in studying driving behaviors and driving styles. Section 3 gives
details about the experiment methodology. Results are shown in Sect. 4. Section 5
reports an discussion in order to inspire potential principles. Section 6 presents
the conclusions and future work.

2 Background and Motivation

Modern Methodology, to evaluate driving style, can be divided into Subjec-
tive Evaluation and Objective Evaluation. Subjective Evaluation is carried out
through quesionnaires and surveys, to obtain empirical results. For instance,
[24] first proposed Driver Behavior Questionnaire (DBQ), to reflect bad driv-
ing behavior by self-reporting. Since then, follow-up efforts, based on DBQ,
investigates on the impacts of regions, cultures, ages and genders, through
the variations of drivers’ behaviors. For instance, [13] developed Driver Style
Questionnaire (DSQ), to study correlations between Traffic Accidents and Driv-
ing Behaviors (e.g. Speed and Distance of Vehicles). Another example is Multi-
dimensional Driving Style Inventory (MDSI) [31] enables the capability to eval-
uate driving styles from multiple dimensions. More specifically, it defines the
structure of driving styles and explicitly classifies them into four categories.

However, these methods are subjective and could be influenced by some
external factors. Hence, Subjective Evaluations demand high standards of the
effectiveness of the driving questionnaire and experts’ experience. To this end,
Objective Evaluation is proposed to complement this method. Objective Evalu-
ations analyze driving styles through driving statistics, which are obtained from
a driving simulator [4] or in-field vehicles [15]. In the context of driving styles,
[5] proposes a classification and recognition model for driving behavior based on
sparse representations. More specifically, the vehicle motion tracks, obtained by
vision, are used as input in this model, and the sparse representation approach
is used to mine the features of the driving behavior decision. Another example
is as follow. [33] proposes a pattern recognition method, which utilizes triax-
ial accelerometers’ statistical data to evaluate normal and aggressive driving
styles. They further discuss time-domain feature extraction. Also, [20] divides
the following behavior according to the difference of patience and puts forward
the view, that the following time can measure the driving style. The Mean and
Standard Deviations of relevant indicators are often used to differentiate the
driver’s driving styles, based on the assumption of a normal distribution for
these indicators [17,34]. However, these measures, derived directly from sequen-
tial observations, are based on static criterion, which can be inconsistent with
established parametric distributions [7].
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Previous attempts, to characterize driving styles, focus on the differentiated
trends of driving statistics (e.g. driving speeds, headway distance, following time,
multi-modal information and etc.) [3,5,6,10,12,20,33]. Such studies overlook the
effects of time-series and results in coarse-grained decision-making procedures,
for the determinations and classifications of driving styles. Hence, we make the
key observation that static partitions of driving styles/behaviors may not be
suitable for adaptive and personalized Driver-Vehicle Interactions. To this end,
we propose to utilize self-clustering algorithms, and compare auto-generated
patterns on-the-fly instead of statically partitioned driving styles.

3 Study Methodology

3.1 Dataset Description

Our study uses a public multi-modal database for Human-Vehicle Interaction
– BROOK [23]. BROOK contains 34 drivers’ data under four driving scenarios
(both manual and automated driving), such as Time, Vehicle Speed, Vehicle
Acceleration and Vehicle Coordinates. We utilize representative drivers’ driving
statistics as input, in terms of time series.

3.2 Dataset Pre-processing

Before the bulk of this study, we first normalize all statistics based on the fol-
lowing insights.

Fig. 1. Movement track of vehicle.
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Data Cleanup. The original database records consist of both only stable stages
and star-up stages and parking stages. Since the driving styles are characterized
within relatively stable stages, we eliminate the unstable stages to ensure our
studies are consistent with others. This representative length of each driving
scenario is enough for driving behavior data analysis. The route map is fixed
and we show it in Fig. 1.

As shown in Fig. 1, the whole driving route can be divided into four stages1,
which are marked in different colors. The statistics reflect that, there are huge
gaps between stable stage and unstable stage, in terms of driving behaviors. For
instance, driving speed usually fluctuates within a certain range, where unstable
stages drift more randomly. Hence, we consider the statistics, without the fixed
range, as a noise source, which is groundless for the characterizing driving styles.

(a)

(b)

Fig. 2. Filter driving data

Feature Selection. We perform feature selections based on the following
insights, where we present backup information in Fig. 2.

Figure 2-(a): One-way Analysis of Variance (ANOVA). Feature selec-
tion, as a pre-processing stage, aims to select the most discriminative features.

1 The stages don’t take traffic lights into account.
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From the perspective of clustering, removing irrelevant features won’t nega-
tively impact the accuracy of clustering. This is because irrelevant variables
may increase noise and mask the underlying pattern or structure in the dataset,
as suggested by [36]. Moreover, such cleanup can reduce the required storage
and processing time. Our decisions are to utilize Wrapper Approach [2] on the
whole dataset, and use these selected features to construct the clusters. The
quality of clustering is an indicator of whether the subset of features is satis-
factory, where ANOVA method was used. Table 1 presents Variance Values of
corresponding features. To this end, those featuress with small variance values
(i.e., a variance value <0.01) are regarded as meaningless features and then
removed [9,28]. Therefore, the features, such as Positionx, Positionz, Rotationy,
Rotationw, Speed (km/h), Steering wheel position1 and Headaway time (sec),
remain for further analysis.

Table 1. Comparison of different obfuscations in terms of their transformation
capabilities

Feature Variance value Feature Variance value

Positionx 4.906680e+ 04 Rotationx 3.873823e− 07

Positiony 8.139139e− 29 Rotationy 6.590198e− 01

Positionz 1.024064e+ 05 Rotationz 9.440301e− 08

Speed (km/h) 1.172809e− 01 Rotationw 1.172809e− 01

Steering Wheel Position− 8.841402e− 04 Steering Wheel Position+ 9.772212e− 02

Gas Pedal Position 2.234481e− 03 Brake Pedal Position 0.000000e+ 00

Engine Running 0.000000e+ 00 Distance Ahead (meters) 0.000000e+ 00

Time to Collision (sec) 0.000000e+ 00 Headway Time (sec) 1.534207e− 01

Figure 2-(b): Principal Component Analysis (PCA). PCA is a type
of unsupervised method of reducing dimension, which produces latent factors
that are known as primary components (PCs). The BROOK database consists
of many kinds of data streams (e.g., Vehicle Speed, Vehicle Acceleration), the
scales and units of different data are different as well. Since PCA is sensitive
to the relative scaling of the original data [14], data normalization needs to be
applied before PCA. To transform them into suitable formats for Object Similar-
ity Calculations, we apply Min-Max Normalization to regularize all statistics to
facilitate this need [22]. After that, we project the data onto the maximum fea-
ture vector to obtain a one-dimensional feature space to find the principal com-
ponents representing each sample. With each subsequent component explaining
less, the first component explains most of the variance in the data.

3.3 Clustering Algorithm

One of the most common clustering strategies is the K-Means Clustering, which
requires a pre-determined number of clusters. However, preconditioning the num-
ber of clusters are quite challenging since sophisticated knowledge of the domain
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is required. In our context, we aim to relax such constraints so that we are capa-
ble to obtain more insights of the spatial correlations among driving behaviors.
To this end, we choose Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [8], for adaptive classifications of driving styles and hidden
patterns of driving behaviors. In this way, we aim to demystify the patterns
within driving procedures. DBSCAN is a self-clustering algorithm, where the
number of clusters is not necessary to be pre-determined. DBSCAN continu-
ously merges two most similar clusters into a new cluster in each iteration until
satisfying certain termination criterion (e.g. distance threshold) [19]. Hereby, we
elaborate more details of this algorithm and our design choices as follow.

Distance Measurement. When performing data clustering, a basic step is to
choose an appropriate distance calculation method that quantifies how similar
individuals concern measurements provided in the variables. The most commonly
used distance measurement is Euclidean Distance, where we take into account at
the first place. For completeness of our study, we also utilize Manhattan Distance
and Chebyshev Distance to quantify these effects [1] and the results are reported
in Table 2. Hereby, we demonstrate these distances to the DBSCAN algorithm
mathematically, as shown in the following equations.

DEuclidean =

√
√
√
√

N∑

i=1

(x1i − x2i)
2 (1)

DManhattan =
n∑

|x1i − x2i| (2)

DChebyshev(x, y) = max
i

(|xi − yi|) (3)

Parameters Setting. DBSCAN also needs to take minPoints and epsilon as
input parameters. The minPoints refers to the minimum number of data points
within the cluster, and epsilon refers to the max radius of the cluster. If the
minPoints value is too small, more core objects will be generated, leading to too
many clusters. On the contrary, two adjacent clusters with higher density may
be merged into the same cluster, resulting in fewer clusters. The influence of the
value selection of epsilon also has similar effects. We use the principle minPoints
= 2 ·dim [26] to select an appropriate range of minPoints. After intensive rounds
of rigorous testing, we identify NINE different setups of both parameters to serve
as the representatives of all possible combinations. This is because our goal is not
to provide a recommended, near-optimal setup but to demystify the interactions
of driving behaviors and styles in detail.

4 Experiment Results

In this section, we present several key results and relevant findings, to showcase
the complicated interactions between driving behaviors and driving styles.
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4.1 Conventional Classification Against Self-clustering

Finding 1: Heterogeneous Styles can be Generated from DBSCAN.
We select the most important dimension (Principle Component 1) after PCA
dimension reduction to represent the original driving behavior feature set. The
larger the feature variance, the more original data information can be retained.
Although the percentage of Principle Component 1’s variance in all feature vari-
ances is only 0.65990205, it can also retain most of the required information for
information visualization. After using DBSCAN algorithm to assign data points,
we showcase the clustering results (as shown in Fig. 3-(a)) and the characteristic
examples of the change, in terms of microtubule length versus time, are shown
in Fig. 3-(b).

(a) Cluster assignment (b) Driving behavior signature

Fig. 3. Driving-style quantification results of Driver Group 3 under road condition 4.

Table 2. Clustering results for different driver groups under the same road conditions.

Distance measurements Parameters combination identification

eps 0.125 0.25 0.5 0.125 0.25 0.5 0.125 0.25 0.5

minPoints 3 3 3 6 6 6 9 9 9

Eulidean distance Group 1 6 5 3 6 5 3 7 5 3

Manhattan distance 8 5 3 10 5 3 10 5 3

Eulidean distance 5 3 3 5 3 3 6 3 3

Eulidean distance Group 2 12 3 3 12 3 3 13 3 3

Manhattan distance 15 5 3 17 6 3 17 6 3

Eulidean distance 10 3 3 10 3 3 10 3 3

Eulidean distance Group 3 6 3 3 6 4 3 6 5 3

Manhattan distance 6 5 3 6 6 3 6 6 3

Eulidean distance 5 3 3 6 4 3 6 5 3

Different from conventional methods, self-clustering method automatically
divides the whole driving stage’s data into three categories. We report similar



Demystifying Interactions Between Driving Behaviors and Styles 343

results as presented in Table 2 by adopting the same research method for multiple
drivers’ data.

Finding 2: Time-Series Variation is Considered by DBSCAN. As dis-
played in Fig. 3, there are certain continuities in behaviors from a single complete
time interval. For instance, the clustering part with green color shows that the
drivers exhibits the same driving style over this period. However, behaviors for
the whole timeline do not exhibit the same characteristics, while they change
dramatically across all driving events. This phenomenon coincides with the dif-
ferent driving stages presented in Fig. 1: the driver entered the following stage
after overtaking, which further expounds that drivers will give different driving
styles in various driving events. What’s more, as is evident from Fig. 3-(b), the
overtaking stage also consists of different driving styles.

Fig. 4. Clustering results under different road conditions.

Finding 3: Driving Styles can be Customized for Different Roads. In
order to verify whether the clustering results of drivers change under differ-
ent traffic conditions, we conduct experiments on driving data under different
road conditions. We observe that, though the proportion of different driving
styles in the whole driving event has changed, the clustering results in a single
driving event are still three. Nevertheless, the same driving style has different
characterization probability under different road conditions. As shown in Fig. 4,
the drivers will show the driving style 1 (cluster 1) with a smaller-time period,
under relatively small traffic density.

Finding 4: Degree of Expression of Different Styles. We also observe
that different styles have different degrees of representation in the whole driving
event. Taking the clustering results, obtained from this setting (i.e. eps = 0.5,
minPoints = 9, Distance Measures = Eulidean Distance) as an example, the
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three driver groups lead to three clustering results as driving styles. But the
degrees of different styles are different. Table 3 backs up this finding: Drivers 1 is
style 1 56% of the whole time, with the time of style 2 and style 3, 30% and 14%
respectively. The pattern for drivers 2 and drivers 3 appear to be reversed. Style
3 is the domain style during this period, with 54% for drivers 2 and 50% for
drivers 3. It can be seen that the differences between individuals are significant.

Table 3. Different levels of style representation.

Style 1 Style 2 Style 3

Drivers 1 56% 30% 14%

Drivers 2 18% 28% 54%

Drivers 3 29% 21% 50%

4.2 In-Depth Driving Style Analysis

(a) (b)

(c) (d)

Fig. 5. Quantification results of driving styles after breakdown analysis.

Finding 5: Isolated Features can Greatly Impact the Classifications.
We perform breakdown analysis by removing key features. Hereby, we isolate
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Position-related features or Rotation-related features. Figure 5-(a) and Fig. 5-
(b) report the results, where we remove Position-related features; and Fig. 5-(c)
and Fig. 5-(d) report the results, where we remove Rotation-related features. We
observe that, though the classification results change, the clustering results are
still complicated. After comparing Fig. 5-(a)/(c) with Fig. 5-(b)/(d), though the
driving styles are still classified into three clusters, removing features have sig-
nificantly impacted the robustness of classifications, in terms of timeline, due to
greatly-impacted features.

Finding 6: Transient Effects form Mutable Driving Styles. [21] consid-
ers driving styles are transient, and explain that a driver can be aggressive at
one period but normal for others. Our experiments also back up that, it’s possi-
ble for the mutation of driving style, from computational perspectives. As shown
Fig. 5-(a), two different driving styles alternately characterize the driver’s behav-
ior in the second half part of the whole procedure. This can be explained as the
driver’s step on the brake and the oil port in congestion, showing a particular dif-
ferent style compared with drivers with stable driving speed on highway. To this
end, our mechanism are more adaptive and robust compared with conventional
methods.

4.3 Driving Styles Overlap

Finding 7: Clusters That are More Likely to Overlap. We extend our
studies by changing the time window to re-cluster the statistics, and combine the
results after using different sizes of time window. We observe that the same driv-
ing behavior is possible to be classified into different styles. The part between the
two red lines in Fig. 6 reflects this complex clustering situation, some data points
are clustered such that they belong to two different clusters. More specifically,
Cluster 1 is more likely to overlap with the other two driving styles.

Finding 8: Scenarios That are More Likely to Occur Overlap.
In Fig. 6-(c), the overlap occurs when the vehicles encounters a traffic light.
This is because the steering of the car is not completely independent of acceler-
ation or braking under the driving event. Thus, wrongly classifying the steering
as acceleration or braking leads to this overlap. While in the situations at Fig. 6-
(a) and -(b), there are complicated traffic conditions, like congestion leading the
driver to have driving behaviors, that are not routine.

So far, we have compared the clustering results based on multiple drivers
and a single time series. We find that not only different drivers will show various
styles, but also the same driver will show style differences among driving periods.
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(a) Drivers 1 (b) Drivers 2

(c) Drivers 3

Fig. 6. Overlaps between driving styles.

5 Discussion

This work analyze the clustering results of driving behaviors and extensively
retrieve multiple findings from computational perspectives. Unlike conventional
classifications of driving styles, our findings show that our proposed mechanisms
for driving styles reveal more opportunities for adaptive and personalized driving
styles’ characterizations. Driving styles will migrate under the influence of traffic
environments, road conditions, and other environmental factors. We can only
conjuncture that drivers are more likely to be in a specific driving style, instead
of classifying them into one specific type. Based on our findings, we further relate
the key points hereby to stimulate new insights and follow-up investigations.

5.1 Driving Behavior Combination

Driving behaviors can describe combined events, because different driving behav-
iors are not always distinguished and independent. For example, acceleration is
often followed by turning at traffic lights, and deceleration behavior is accompa-
nied by stopping in front of traffic lights. After turning to the other direction, the
driver can adjust the speed and lane to better drive experience. This phenomenon
makes it difficult to distinguish steering from acceleration or deceleration behav-
ior under certain conditions.



Demystifying Interactions Between Driving Behaviors and Styles 347

5.2 Traffic Environment

The rising number of vehicles can exacerbate road congestion and render the
flow of traffic more complicated. Certain events may be detrimental in some
situations. The difference in road conditions will bring difficulties in identify-
ing driving style because driving behavior will change. For instance, the calm
type driver will frequently step on the brake and the oil port in the case of
congestion, showing a particular aggressive style, while the aggressive type will
maintain a relatively stable driving speed on highway. Our studies reveal that,
the analysis of driving behaviors in specific road conditions is more critical for
style representation.

5.3 Driving Behavior Levels

[32] divides the completion of a driving main task into four main levels: strategic
level, mode level, operational level and scene awareness level. Driving style can be
reflected on any level. There are: (1) Decision preferences at the strategic level,
such as selecting short-distance routes [18]; (2) Driving mode preferences at the
mode level, such as frequent lane change, near-following, and far-following [27];
and (3) Operating mode preferences at the operational level, such as uniform
acceleration, rapid acceleration, and whether to turn on the turn signal in time
[25]. At the level of perceptions, there are recognition preferences such as whether
to observe the external area adequately before the lane changes and whether the
sight line deviates from the path for a long time [35].

We also vision that our study is complementary to other relevant works
as well. [11] provides alternative mechanisms to obtain drivers’ multi-modal
statistics in a more user-friendly manner. [30] examines the influences of user
trust in auto-vehicles, by applying BROOK [23] as the dataset. [29] also ignites
the opportunities for more practical infrastructure to enhance the dataset. We
believe future works are both essential and promising.

6 Conclusions

We argue that driving styles demand adaptive classifications, and such mecha-
nisms are essential for adaptive and personalized Human-Vehicle Interaction sys-
tems. To this end, we conduct an in-depth study to demystify complicated inter-
actions between driving behaviors and styles. The key idea behind this study is
to enable different numbers of clusters on the fly, when classifying driving behav-
iors. We achieve so by applying Self-Clustering algorithms (i.e. DBSCAN) over a
state-of-the-art open-sourced dataset of Human-Vehicle Interactions. Our results
derive 8 key findings, which showcases the complicated interactions between
driving behaviors and driving styles. Hence, we conjecture that future Human-
Vehicle Interactions systems demand similar approaches for the characterizations
of drivers, to enable more adaptive and personalized Human-Vehicle Interaction
systems. We believe our findings can stimulate and benefit more future research
as well.



348 Y. Zhang et al.

Acknowledgements. We thank for the anonymous reviewers from HCI’21 Regular
Paper Track and all members of User-Centric Computing Group for their valuable
and insightful feedbacks, especially Mr. Zhentao Huang. This project is a part of the
BROOK project from the User-Centric Computing Group in the University of Not-
tingham Ningbo China [23].

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inf. Syst. 53, 16–38 (2015)

2. Alelyani, S., Tang, J., Liu, H.: Feature selection for clustering: a review. Data
Clustering: Algorithms Appl. 29(1), 230 (2013)

3. Augustynowicz, A.: Preliminary classification of driving style with objective rank
method. Int. J. Automot. Technol. 10(5), 607–610 (2009)

4. Chen, S.W., Fang, C.Y., Tien, C.T.: Driving behaviour modelling system based on
graph construction. Transp. Res. Part C: Emerging Technol. 26, 314–330 (2013)

5. Chen, Z.J., et al.: Vehicle behavior learning via sparse reconstruction with �2 − �p
minimization and trajectory similarity. IEEE Trans. Intell. Transp. Syst. 18(2),
236–247 (2016)

6. Constantinescu, Z., Marinoiu, C., Vladoiu, M.: Driving style analysis using data
mining techniques. Int. J. Comput. Commun. Control 5(5), 654–663 (2010)

7. Driggs-Campbell, K., Govindarajan, V., Bajcsy, R.: Integrating intuitive driver
models in autonomous planning for interactive maneuvers. IEEE Trans. Intell.
Transp. Syst. 18(12), 3461–3472 (2017)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

9. Hua, J., Tembe, W.D., Dougherty, E.R.: Performance of feature-selection methods
in the classification of high-dimension data. Pattern Recogn. 42(3), 409–424 (2009)

10. Huang, J., Lin, W.C., Chin, Y.K.: Adaptive vehicle control system with driving
style recognition based on headway distance (Oct 2 2012), uS Patent 8,280,560

11. Huang, Z., et al.: Face2multi-modal: In-vehicle multi-modal predictors via facial
expressions. In: Adjunct Proceedings of the 12th International Conference on Auto-
motive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2020,
Virtual Event, Washington, DC, USA, 21–22 September, 2020, pp. 30–33. ACM
(2020). https://doi.org/10.1145/3409251.3411716

12. van Huysduynen, H.H., Terken, J., Eggen, B.: The relation between self-reported
driving style and driving behaviour: a simulator study. Transp. Res. Part F: Traffic
Psychol. Behav. 56, 245–255 (2018)

13. Ishibashi, M., Okuwa, M., Doi, S., Akamatsu, M.: Indices for characterizing driving
style and their relevance to car following behavior. In: SICE Annual Conference
2007 pp. 1132–1137. IEEE (2007)
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