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Abstract—We propose a method for generating music from a
given image through three stages of translation, from image to
caption, caption to lyrics, and lyrics to instrumental music, which
forms the content to be combined with a given style. We train our
proposed model, which we call BGT (BLIP-GPT2-TeleMelody),
on two open-source datasets, one containing over 200,000 labeled
images, and another containing more than 175,000 MIDI music
files. In contrast with pixel level translation, the BGT model
retains the semantics of the input image. We verify our claim
through a user study in which participants were asked to
match input images with generated music without access to the
intermediate caption and lyrics. The results show that, while
the matching rate among participants with low music expertise
is essentially random, the rate among those with composition
experience is significantly high, which strongly indicates that
some semantic content of the input image is retained in the
generated music.

Index Terms—media semantics, media composition, machine
learning

I. INTRODUCTION

With the growth of computational power, simulation of
human artistic creation by artificial intelligence (AI) has
gained further prominence, with advances which not only
provide us with further insight into the nature of artistic
creation, but also have ramifications for creative industries [1].
In AI composition, musicality of the generated piece has
garnered much of the attention of the researchers, and is still
a significant challenge.

In this article, we focus on another salient feature, i.e.,
semantics. We consider the visual medium of images and
the audio medium of music. We propose a model which
transforms an input image to an instrumental music track
via the intermediate steps of image caption generation, lyrics
generation from the image caption, and finally lyrics to music
translation. The components used for this purpose are the
image captioning method of Bootstrapping Language-Image
Pre-training (BLIP) [2], a lyrics generator based on Generative
Pre-trained Transformer 2 (GPT-2) [3], and the lyrics to music
translator TeleMelody [4]. As such, we use the initials of the
three components and refer to the pipelined system as BGT.

We train BGT on two open-source datasets: the COCO
Dataset [5], which contains over 200,000 labeled images, and
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Lakh MIDI Dataset [6], which contains over 175,000 MIDI
music files. We augment BGT with the one-shot music style
migration system Groove2Groove [7], to incorporate various
genres of music. A schema of the system is depicted in Fig. 1
and the code is available at:

o https://github.com/BILLXZY1215/BGT-G2G

While images tend to have tangible content, the debate over
whether music admits semantics has not been settled. Based
on Gricean criteria, Mikalonyté [8] argues that pure music
does not have semantic content. Jackendoff [9] states that
music is not propositional and it cannot convey messages about
people or objects. On the other hand, in a series of articles,
Schlenker has recently developed a semantic framework for
music (see [10] and the references therein).

Our aim is not to address whether music admits a Tarski-
style semantics as is applicable to natural or formal languages.
The paradigm that we adopt is closer to that of Patel [11],
according to which, as long as a musical element brings to
mind things other than itself, it indicates semantic content.
Thus, in our evaluations, we take human usage and perception
as the primary indicators of semantics and its retention [12].
For the evaluation of the model, we have carried out a user
study to investigate the extent of semantics retention of the
system from the perspective of individuals with various levels
of musical expertise. The participants were asked to match a
set of images with the generated music tracks without access
to the intermediate captions and lyrics. The results show that
the participants with higher musical expertise (especially those
with composition experience) have a significantly higher suc-
cess rate at matching images with their corresponding music
tracks, compared with participants without music expertise.

II. BACKGROUND AND RELATED WORK

The field of AI music composition has a rich literature, and
may be regarded as a microcosm of modern machine learning
(ML). For instance, among the variety of ML models used in
composition, we mention LSTM [13], [14], auto encoder [15],
RBM [16] and GAN [17]. Acceptable levels of musical-
ity have been achieved in projects such as MidiNet [18],
MuseGAN [19] and Jukebox [20].

While these systems perform well in arranging notes and
chords, the emotions that they evoke cannot be compared
against a tangible reference. Visual perception, on the other
hand, can play a significant role in composing and evaluating
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Fig. 1. BGT-Groove2Groove: Pipeline.

music [21]-[23]. Hence, we focus on some related work on
image to music conversion.

Music can be represented in audio format (e.g., WAVE,
Flac, MP3, etc.) or symbolic format (e.g., MIDI, Piano roll
matrix, etc.). Some direct methods of image to music conver-
sion regard an image as a matrix of pixels, and generate a piano
roll from the matrix. For instance, according to Scriabin’s
concept of synesthesia [24], the twelve notes of the diatonic
scale can be mapped to twelve different colors in the visible
spectrum, which can be the basis for direct conversion of
images to music. Other direct methods include methods of
Mathigatti' and Vooydzig?.

There are non-direct methods of image to music conversion
as well, such as Musical Vision [25] and EdgeSonic [26],
where the focus is on the time series generated according
to how human eye scans various parts of an image. Other
notable methods include image sonification [27]. Nevertheless,
these methods are also incapable of retaining the semantic
information of an input image.

The relationship between pictorial and music semantics has
been studied before. For instance, Schlenker [10] has devel-
oped formal semantics for both within the framework of Super
Semantics, although his focus has been mostly on sequences
of images. Wu et al. [28], [29] have also devised algorithmic
methods for estimating the semantic match between images
and music. The experiments in [29] were performed over songs
that contain lyrics. In contrast, our generated music tracks are
instrumental. As such, they contain no verbal indicators of any
extra-musical semantic clues.

A more important distinguishing feature of our work is that
the music tracks are generated entirely by machine learning
systems, while in [28], [29], the music is created by musicians.
It should be emphasized that we make no claims as to
whether the current machine learning systems in general—and
those used in our model in particular—exhibit intelligence or

Uhttps://github.com/mathigatti/midi2img
Zhttps://github.com/vooydzig/img2midi

understanding comparable to human beings. In fact, we are
very skeptical of such claims. Nonetheless, we hope that our
work sheds some light on the capabilities of such systems in
retention of semantics in cross-form art creation, and also on
our understanding of human perception of different forms of
art.

III. BGT PIPELINE

In this section, we present the BGT pipeline in more details.
Our focus is the image content, as opposed to (say) coloring or
style. To that end, the first step involves generation of caption
from a given image. There are many image captioning methods
available based on, e.g., LSTM [30], [31], GAN [32], or
attention mechanism [2], [33]. We have chosen Bootstrapping
Language-Image Pre-training (BLIP) [2] as the state-of-the-
art component based on vision-language pre-training (VLP).
For example, when given the album cover of Abbey Road by
The Beatles (Fig. 2), BLIP generates the caption “A group of
people walking across the road”.

BLIP incorporates a multimodal hybrid encoder-decoder
(MED)—which can be used for various tasks—to pre-train a
unified model with comprehension and creation capabilities.
A unimodal encoder, an image-grounded text encoder, and
an image-grounded text decoder are integrated into BLIP to
achieve better performance.

To bring the content closer to a musical form, we transform
the caption into lyrics using OpenAl’s Generative Pre-trained
Transformer 2 (GPT-2) [3]. The first few verses of the lyrics
generated for Abbey Road album cover are as follows:

Well, I'm a rolling stone

But my song is never sung

I got no mob traditions

Got ’em rocking and a-rollin’

For the final stage of the pipeline, we have used
TeleMelody [4] to generate music from lyrics. TeleMelody
performs the translation in two stages: lyrics-to-template and


https://github.com/mathigatti/midi2img
https://github.com/vooydzig/img2midi

‘

Input: album cover of Abbey Road

Output: A Group of People Walking across the Road

Fig. 2. A working example of BLIP: Image Captioning

template-to-melody. Musical templates for tonality, chord pro-
gressions, rhythmic patterns, and tempo are used as intermedi-
ate steps to enable smoother transition from lyrics to melody.

Generating a template from lyrics requires two simultaneous
steps:

1) Lyrics to rhythm mapping, with a default tonality.
2) Punctuation to cadence mapping.

Punctuation is essential for chord changes and melodic
variations. The pipeline, and the dependencies of various
components are depicted in Fig. 3, where it can be seen that,
for generating melody from a template:

o the pitch depends on tonality, chord progression, and
cadence;

« position depends on the rhythm pattern;

o duration depends on cadence.

While Telemelody can perform automatic segmentation of
lyrics and chord matching, it can also accept the chord
sequence as a parameter to customize the output.

A. Training and preparation

As illustrated in Fig. 1, BGT has three components:

1) Image to caption: For image captioning task, we
use the COCO Dataset [5S]—with over 200,000 labeled
images—to train the BLIP model.

2) Caption to lyrics: GPT-2 has been trained by the
WebText Dataset [3], which is an internal OpenAl
corpus created by scraping web pages with emphasis
on document quality. Thus, we directly use Mathigatti’s
pre-trained model.?

3) Lyrics to music: To convert lyrics to music, we train
TeleMelody using the Lakh MIDI Dataset [6], which
contains more than 175,000 MIDI files, ranging over
various music styles. We use Lakh MIDI Dataset for
both lyrics-to-template and template-to-melody compo-
nents of TeleMelody.

We enrich the output of BGT by augmenting the model with
Groove2Groove [7], a one-shot Al system for style transfer,
which is implemented using an encoder-decoder model.

3https://lyrics.mathigatti.com/

IV. EXPERIMENTS

We take four images which evoke distinct emotions, and
use these images as input to the pipeline of Fig. 1, resulting
in four instrumental music tracks. Then, we ask the survey
participants to match the four tracks generated with the four
images. There are 4! = 24 possible ways of matching the
tracks with images. Thus, if the matching is done randomly,
there is around 1/24 = 4% chance of success.

After gathering the results of our user study, if the matching
rate is close to random (i.e., 4%) then this will mean that not
much of the semantic content of the input images has been
retained through the pipeline. If the matching success rates are
significantly higher than random, then we have some evidence
that the pipeline indeed retains some of the semantic content
of the input.

The four images that we have selected are shown in Fig. 4.
The titles for these images are, from left to right: Mysterious
Man, Coffee & Book, Lovers in the Rain, and Big Wave.
The emotions commonly attributed to these images by our
participants are also shown underneath each image in Fig. 4.

For the style input of Groove2Groove, we select four songs
from Lakh MIDI Dataset [6] that are representative of the
four styles of blues, country, electronic, and jazz music. This
results in a total of 16 combinations of input images and music
genres.

We also assign a chord progression to each intermediate
lyrics, which forms the input to TeleMelody. We have chosen
16 chord progressions (with a one-to-one match with the 16
combinations mentioned above) to increase randomness. The
participants are not informed about these chord progressions.

On average, when deployed using the trained models, the
time required to generate a music track from the input image
and the style is around five minutes.

V. EVALUATION

The quality of the output of the pipeline, and how well the
output matches the input, are ultimately best judged by human
participants. Hence, we conducted a user study in which the
participants were asked to rate various aspects of the input
and output in terms of emotions that they evoke and how
they match. For the experiments, the participants were given a
list of ten emotion tags (psychological attributes) as follows:
intense, calming, romantic, thrilling, mellow, manic, happy,
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Fig. 4. Input images of the pipeline: Four images that evoke distinct emotions.

sad, deep and dreamy. These were chosen from 38 attributes
listed in [34, Table 1]. We selected only ten attributes for
convenience of the participants, which we assumed would
suffice for the four input images.

The questionnaire was anonymized, and the participants
were informed that their response would be used only for aca-
demic research. Furthermore, the participants were informed
that the output music tracks were computer generated based
on the input images.

In the design of the questionnaire and the sequencing of
questions, we took inspiration from previous work on music
generation which involved user study, e.g., music quality
marking [35], [36] and emotion marking [37]. On average,
each participant had to spend around fifteen minutes on the
survey.

Remark 5.1: We estimated that fifteen minutes was an
acceptable duration for each participant to help us with the
user study. Thus, the main reason behind choosing four images
and generating four music tracks—as opposed to a smaller
or larger number—was to strike the right balance between
reliability of the statistical analyses and convenience of the
participants.

The participants were asked to respond to the following
requests in the survey:

1) Select music expertise level: nonexpert, familiar with

2)

3)

4)

)

0)

basic music theory, and having experience in composing
music.

For each of the given images (Fig. 4), select a best
matching emotion tag (psychological attribute) from the
list of the ten tags: intense, calming, romantic, thrilling,
mellow, manic, happy, sad, deep and dreamy.

Select the music style (genre) of your choice: The
participants were given the chance to listen to the style
input tracks from each of the four genres of blues,
country, electronic, and jazz. Then, they were asked to
choose one from the four.

Evaluate the result: At this stage, the participants were
given the generated tracks, and they were asked to rate
them based on three aspects, on the scale of 1 to 5:

o Similarity between the generated track and the style
input (very low similarity 1 — 5 very high similarity).

o Musicality of the result (not musical 1 — 5 satisfac-
tory).

e Creativity of the model (non-creative 1 — 5 very
creative).

Select the best matching emotion tag (out of ten) for
each generated track.

Match each of the four generated tracks with the corre-
sponding input image: This is the most important step



TABLE I
DISTRIBUTION BY GENRE PREFERENCE.

[ Genre
Blues
Country
Electronic
Jazz

| Percentage |
24.67%
24.67 %
25.33%
2533 %

TABLE I
DISTRIBUTION BY EXPERTISE LEVEL.

[ Expertise Level | Percentage |

49.33%
24.00 %
26.67%

Nonexpert
Basic Music Theory
Experience in Composing

in the survey, which determines whether there is any
semantic correspondence between the input images and
the generated tracks, in a way that is recognizable by
participants.

The survey was taken by a total of 150 participants with
different expertise levels and genre preferences. As shown in
Table I, in terms of genre preference, there was an almost
perfect even distribution. In terms of expertise level, as shown
in Table II, almost half of the participants were nonexperts,
while those who had familiarity with basic music theory and
those who had experience in composition made up about a
quarter of the participants each.

A. Matching Emotion Tags

In steps 2 and 5 of the survey, the participants were asked
to assign an emotion tag to each image and the generated
tracks. When choosing the tag for the generated track, if the
selection is done randomly (out of the ten tags) then the correct
matching rate should be 10%. As can be seen from Fig. 5:

1) The matching rate increases with expertise in music
among the participants.

2) In some cases, the matching rate of nonexperts is not
significantly different from the random 10%, e.g., for
the input images ‘Lovers in the Rain’ and ‘Mysterious
Man’.

3) The overall matching rate is generally significantly
higher than random.

B. Similarity, Musicality and Creativity

In Step 4 of the survey, the participants were asked to rate
the output in terms of the three features of similarity (with
the input style track), musicality of the generated track, and
creativity in composition exhibited by the model. Fig. 6 shows
the mean value of the responses provided by the participants,
broken down by genre.

As can be seen, the participants gave a high score for
similarity across the four genres. The lowest mean score was
given as 3.784. There are more noticeable variations in scores
for musicality and creativity. The genre of Jazz was given
the highest average score for musicality (and also the highest
score in the subsequent image-music matching, as shown in

Understand Basic
Music Theory

I Nonexperts Have Experience Total

in Composing

Image-Music Emotion Matching Rate

Mysterious Man

Coffee & Book

Lovers in the rain

Big Wave

0 0.175 0.35

0.525 0.7

Fig. 5. Image-music emotion matching rate.

TABLE III
SIGNIFICANCE TEST OF DIFFERENCES IN USER’S MEAN SCORES.
[ Hypothesis [ P-value [ Significance |
Similarity: Blues vs Country 0.056 Not Significant
Musicality: Jazz vs Blues 2.26 x 10~ 1® | Highly Significant
Creativity: Blues vs Country | 2.18 x 10~ 10 | Highly Significant

Fig. 8). Country music received the highest average score for
creativity, while the scores were the lowest for blues music,
both for musicality and creativity.

At first sight, the scores reported in Fig. 6 seem quite
close to one another. Thus, we investigated the significance
of the differences in the scores by performing significance
test between the two groups with the largest differences in
terms of similarity, musicality, and creativity. For example,
in similarity, Blues (3.993) and Country (3.784) are the two
genres with the largest differences.

We apply Analysis of Variance (ANOVA) test to ascertain
significance of differences. The basis for our judgement is the
following inequalities regarding the P-Value:

P-value > 0.05 = Not Significant,
P-value < 0.05 = Significant,
P-value < 0.01 = Highly Significant.

Table III shows the P-Value between the scores with the
largest differences, for the three aspects of similarity, musi-
cality, and creativity, and their corresponding significance. We
conclude that, for musicality and creativity, the differences in
participants’ mean scores are significant, while for similarity,
the differences are not significant. This may be interpreted as
an evidence for consistency of the model in terms of musical
style retention.

In summary, the model performed well in terms of musical
style retention. The performance, however, was not uniform
for musicality and creativity across genres. We leave an
investigation of the reasons behind this for future work.
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Fig. 6. Ratings of similarity, musicality, and creativity.
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Fig. 7. Image-music matching rate by image content.

C. Image-Music Matching

Step 6 of the survey contains, arguably, the most important
question, where the participants are asked to match the output
music tracks with the input images. The participants do not
have access to the intermediate captions and lyrics, and do not
know the architecture of the model used in the generation of
the tracks. The image-music matching rate by image content
can be seen in Fig. 7, which shows that ‘Mysterious Man’ has
had the highest correct matching rate, whereas 'Big Wave’
scores the lowest.

The image-music matching rate by genre is shown in Fig. 8§,
according to which, Jazz genre received the highest matching
score, and Country scores the lowest.

Finally, we consider the overall matching rates, broken
down by the expertise of the participants, as shown in Fig. 9.

As there are four input images and four output tracks, there
are 4! = 24 ways of matching the output music to the input
images. If done randomly, the success rate should be around
1/24 = 0.042, and total failure (i. e., not matching any output
music to the corresponding input image correctly) would have
the probability 9/24 = 0.375. This is because the number of
the so-called derangements of a set of 4 elements is 9 [38].

W Blues % Country W Electronic Jazz

Image-Music Matching Rate by Style
0.7

0.525 .

0.35

0.175

Fig. 8. Image-music matching rate by genre (style track).

I Nonexperts I Understand basic music theory
I Have Experience in Composing

Total Matching Rate by Expertise Level
Match No Match

0.042 0.375

Total Matching Rate

Total None Matching Rate

0 0.175 0.35 0.525 0.7

Fig. 9. Overall matching rates.

As can be seen from Fig. 9:

1) Correct matching rates increase with the participants’
expertise in music. For nonexperts, the matching rate
is not significantly different from random match, while
the rate for participants with composition experience is
quite stark, at 62.50%, which is well above the 4.2%
line.

2) The rate of totally incorrect matching (i.e., derange-
ment) among nonexperts (32.43%) is also not far from
the 37.5% random threshold, whereas, for those with
composition experience, the rate of derangement is only
2.50%, which is far below the random threshold.

VI. DISCUSSION

One might expect skilled musicians to perceive links be-
tween music created by musicians and other forms of art at
a rate higher than nonexperts. Yet, the very fact that, in our
experiments, the matching rates by music experts are so higher
than random matching, prompts further analysis and explana-
tion, given that all the components of the BGT-Groove2Groove
pipeline of Fig. 1 are machine learning models. This is in
contrast with (say) the experiments of [28], [29] which are
performed on music created by musicians, with music videos



(also created by artists) that have been designed carefully to
match the music.

We believe that it is very unlikely that any of the machine
learning components of our model in isolation, or combined,
can exhibit human intelligence, let alone understanding of
human emotions. It is, rather, more likely that retention of
semantics and emotions is achieved because of the nature
of datasets used in training of the components. For instance,
GPT-2 is a transformer which operates based on the attention
mechanism. In other words, it is designed to ‘learn’ the
correlations among various items in an input sequence, and
trained on a very large dataset. Thus, it ultimately operates
based on pattern matching.

The datasets for all the components of the pipeline are
prepared by human beings. As such, it is possible that there
are strong patterns common to images, text, and music, that
are discovered by the machine learning components, which are
subsequently manifested in the output of the system. We stress
that the image content that is passed through the pipeline is not
‘syntactical’, e. g., not pixel level color distribution. Therefore,
the patterns that appear in the output music must be more
related to the intermediate text (i. e., caption and lyrics) rather
than the color distribution of the input image.

Mehr et al. [39] have demonstrated that music appears in
every society observed, and identifiable acoustic features of
songs (e.g., accent, tempo, pitch range, etc.) predict their
primary behavioral context (love, healing, etc.). Thus, one may
conclude that people (of all societies) have some hard-coded
familiarity with the context of music that they hear. This, in
turn, may be reflected in the datasets used to train our systems.

VII. CONCLUDING REMARKS

We have proposed a model, which we call BGT, for gen-
erating music from given input images. The focus is on the
semantic content of the input image, as opposed to (say) color
distribution. Thus, the model, depicted in Fig. 1, works based
on the three stages of image to caption, caption to lyrics, and
lyrics to (instrumental) music transformation. All the stages
are carried out by machine learning models.

Through a user study with 150 participants, we have demon-
strated that, with enough musical expertise, the participants
can match the output music with the input image, and also
assign consistent emotional tags to both. The results of this
kind may be helpful in investigation of (limits of) intelligence
and understanding exhibited by machine learning models. The
approach can also be helpful for similar work in cross-media
conversion not restricted to image and music.

In practical terms, such models can be useful for automatic
composition of short music pieces that are relevant to specific
contexts, e.g., composition of background music for adver-
tisement videos.

As for future work, we envisage some directions as follows:

1) A convincing theoretical investigation of why the match-
ing rates can be significantly higher than random.

2) Improvements on the model structure and datasets to
enable generation of higher quality music with more
diversity.

3) Improvements on the control of the experiment condi-
tions. For instance, including control data such as non-
related images and music to the image and music set
will strengthen the conclusions of the current work.

4) Investigation of the influence of genre on the qualitative
features of the generated music. We have seen in Fig. 6
that the scores for musicality and creativity are different
across various genres. Whether this is due to some
intrinsic features of each genre, or deficiencies of the
datasets and training, will be investigated in future work.
Recall that the style input tracks in the current work
have been limited to four representative tracks from each
genre. A broader selection of style tracks from each
genre will be considered in future work.

5) Currently, we have fixed the four input images and the
accompanying styles. It will be helpful to automate the
entire pipeline for any input image and style, and survey
a broader base of participants. This will shed more light
on the potentials and limitations of such approach to
music composition.

6) Carrying out the experiment in languages other than
English. For the current work, the intermediate steps
have involved English text. If the results of the current
study are sound and robust, then, in light of the results
of [39], similar patterns are likely to exist in languages
other than English, which link semantics of images to
the patterns that are generated in the resulting music.

7) In the opposite direction, design of a method for gener-

ating images—with concrete content—from pure music,
in such a way that enables a high rate of matching, at
least by music experts.
In this respect, we point out the related work of Passalis
and Doropoulos [40], who have used deep learning for
translating music to sequences of images (visual stories)
with the aim of reflecting the sentiment of the input
music track. While we have used caption and lyrics in
the intermediate steps, in [40], the authors use valence
and arousal [41]. Furthermore, their aim is retaining
sentiment in generation of visual stories, while we will
focus on retention of semantics in generation of a single
image.
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